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In number theory, many important problems require a good understanding of the arith-

metic properties of prime numbers. Let p be a fixed prime. It is then possible to define a

metric on the rational numbers by looking at the divisibility of the numerator and denomina-

tor of a rational number by p. This metric is called the p-adic metric. Continuous functions

behave very differently with this metric compared to the euclidean metric. For example, the

p-adic logarithm factors into an infinite product of polynomials, which is not the case for the

standard logarithm.

In this paper, many properties of p-adic functions will be studied. In particular, the fac-

torization of the p-adic logarithm makes it possible to define new p-adic functions that can

be used to solve problems in Iwasawa theory. Our main result gives a new description of

Pollack’s plus and minus p-adic logarithms in terms of distributions. We then generalize our

results to p-adic logarithms in two variables.
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1 Introduction

The goal of this section is to introduce background knowledge required for the rest of the

document. We follow closely the structure of Koblitz [1].

1.1 p-adic numbers

For completeness, we state the familiar definition of a norm on a field.

Definition 1.1.1. A norm on a field F is a map ‖·‖ from F to the non-negative real numbers

such that for all x, y ∈ F

1. ‖x‖ = 0 if and only if x = 0,

2. ‖xy‖ = ‖x‖ ‖y‖,

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Proposition 1.1.1. ‖·‖ is a continuous function.

Proof. Let ε > 0. By the reverse triangle inequality, | ‖x‖ − ‖y‖ | ≤ ‖x− y‖. Hence, it

suffices to take δ = ε. So we have ‖x− y‖ < δ =⇒ |‖x‖ − ‖y‖ | < ε.

To analyse convergence of sequences in a set, we need the notion of distance between

elements of the set.

Definition 1.1.2. If X is a nonempty set, a distance, or metric, on X is a function d from

pairs of elements (x, y) of X to the nonnegative real numbers such that

1. d(x, y) = 0 if and only if x = y,

2. d(x, y) = d(y, x),

3. d(x, y) ≤ d(x, z) + d(z, y) for all z ∈ X.

It is easy to check that a norm ‖·‖ induces a metric by letting d(x, y) = ‖x− y‖. In real

analysis, the metric is induced by the absolute value on Q. It is possible to define another

norm on Q to get a different metric.

Definition 1.1.3 (Koblitz). Let p be a fixed prime number. For any non-zero integer a, let

the p-adic valuation of a, denoted vp(a), be the highest power of p which divides a, i.e., the

greatest m such that a ≡ 0 mod pm. By convention, let vp(0) = ∞. Further extend the

definition of vp on rational numbers by letting vp(a/b) = vp(a)− vp(b).

Proposition 1.1.2. vp behave a little like the logarithm would: vp(ab) = vp(a) + vp(b).
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Proof. Write a = pvr where p - r and b = pus where p - s. Then, vp(ab) = vp(p
v+urs) =

v + u = vp(a) + vp(b).

Note that vp is well defined for x = a/b ∈ Q. If we take a different representative for x,

let’s say x = ac/bc, we get vp(ac/bc) = vp(a) + vp(c)− vp(b)− vp(c) = vp(a/b).

Definition 1.1.4. Define a map | |p on Q as follows:

|x|p =

 1
pvp(x)

if x 6= 0,

0 if x = 0.

Proposition 1.1.3. | |p is a norm on Q.

Proof. Since 1
pvp(x)

6= 0 for all x 6= 0, we have |x|p = 0 if and only if x = 0. For the

second property of norms, let x, y ∈ Q×. By using the previous proposition we obtain

|xy|p = p−vp(xy) = p−vp(x)−vp(y) = p−vp(x)p−vp(y) = |x|p|y|p. For the triangular inequality, the

result is trivial if x = 0, y = 0 or x+y = 0, so we assume that x, y and x+y are all non-zero.

Let x = a/b and y = c/d be written in lowest terms. Then vp(x + y) = vp((ad + bc)/bd) =

vp(ad + bc) − vp(bd). Because the highest power of p dividing the sum of two number is at

least the minimum of the highest power dividing the first and the highest power dividing the

second, we have

vp(x+ y) ≥ min(vp(ad), vp(bc))− vp(b)− vp(d)

= min(vp(a) + vp(d), vp(b) + vp(c))− vp(b)− vp(d)

= min(vp(a)− vp(b), vp(c)− vp(d))

= min(vp(x), vp(y))

This implies vp(x+ y) ≥ vp(x) + vp(y) which in turn implies |x+ y|p ≤ |x|p + |y|p.

We have in fact proven a much stronger inequality, |x+y|p ≤ max(|x|p, |y|p) with equality

if |x|p 6= |y|p. Norms with this property are called non-archimedean norms in contrast with

archimedean norms like the absolute value. Non-archimedean norms induce non-archemidean

metrics, that is, metrics with the property that d(x, y) ≤ max(d(x, z), d(z, y)). To construct

the real numbers from Q, we consider the completion of Q with respect to the metric

d(x, y) = |x − y|. We now fix a prime number p. We can complete Q with the metric

induced by | |p to get a field with different properties than R. Let S be the set of Cauchy

sequences with respect to | |p. That is, for {ai} ∈ S, given an ε > 0, there exist an N such

that |ai − aj|p < ε if both j, i > N . We say that two Cauchy sequences {ai} and {bi} are

equivalent if |ai − bi|p → 0 as i → ∞. We define the set of p-adic numbers Qp to be the

set of equivalence classes of Cauchy sequences. We identify Q with the subset of constant
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Cauchy sequences in Qp.

We say that a set X equipped with a metric is complete if every Cauchy sequence in X

converge in X.

Definition 1.1.5. We define the norm | |p of an equivalence class a ∈ Qp to be limi→∞ |ai|p
where {ai} is any representative of a.

Proposition 1.1.4. The limit |a|p exists and does not depend on the choice of representative.

Proof. If a = 0, the constant Cauchy sequence whose all terms are zero, then by definition

of a norm |a|p = 0. Suppose a 6= 0. Because a is Cauchy and | |p on Q is a continuous

function, |ai|p forms a Cauchy sequence in R. This limit exists by the completeness of R. If

{ai} ∼ {bi}, then

|ai|p = |ai − bi + bi|p ≤ |ai − bi|p + |bi|p

and the same way,

|bi|p ≤ |ai − bi|p + |ai|p,

hence, limi→∞ |ai|p = limi→∞ |bi|p.

Definition 1.1.6. Let a and b be two equivalence classes of Cauchy sequences. We choose

any representatives {ai} ∈ a and {bi} ∈ b and define

• a+ b = {ai + bi}.

• ab = {aibi}.

Proposition 1.1.5. Addition and multiplication on equivalence classes are well defined.

Proof. Let {ai} ∼ {a′i} and {bi} ∼ {b′i} be two representatives of a and b respectively. For

the multiplication, we have

|aibi − a′ib′i|p = |a′i(b′i − bi) + bi(a
′
i − ai)|p

≤ max (|a′i(b′i − bi)|p, |bi(a′i − ai)|p) .

As i → ∞, the first expression approaches |a|p lim |b′i − bi|p = 0, and the second expression

approaches |b|p lim |a′i − ai|p = 0. Hence {a′ib′i} ∼ {aibi}. For addition, we have

|(a′i + b′i)− (ai + bi)|p ≤ max (|a′i − ai|p, |b′i − bi|p) .

As i→∞, both expression approaches 0. Hence {a′i + b′i} ∼ {ai + bi}.
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We also define additive inverse and multiplicative inverse in the obvious way. Though a

bit tedious, it can be shown that Qp is a field with these operations and that Qp is a complete

metric space. Interested readers may refer to Koblitz for more details on this subject.

Like a real number can be viewed as a decimal expansion, an element of Qp can be written

as a p-adic expansion in this way:

Theorem 1.1.1. Let a ∈ Qp, then a can be expressed in the form a = a−mp
−m+a−m+1p

−m+1+

· · ·+ a0 + a1p+ a2p
2 + · · · where ai ∈ {0, 1, . . . , p− 1}.

In other words, a can be written as an infinite expansion in base p with only finitely

many negative power of p. The ai are called the digits of a. We accept this result without

demonstration. It is more useful to think of Qp this way because it gives us a more concrete

sense of elements in Qp. With this notation, the valuation of a ∈ Qp is given by the

power of p corresponding to the first nonzero digit of a. For example, the valuation of

4 · 53 + 1 · 54 + 2 · 57 + · · · in Q5 is 3. We write a ≡ b mod pn if |a− b|p ≤ p−n. If a and b

are in Z, then this definition agrees with the usual definition of modulo.

Definition 1.1.7. We denote Zp = {a ∈ Qp : |a|p ≤ 1} and we call Zp the set of p-adic

integers.

Zp consists of all the p-adic numbers whose p-adic expansion only contains positive power

of p. The p-adic integers form a subring of Qp.

Proposition 1.1.6. Zp is sequentially compact, hence compact.

Proof. See [2][lemma 4].

We shall sometime need to consider a bigger field than Qp, the algebraic closure of Qp, the

field Qp. The only thing for us to know about Qp is that it contains all roots of polynomials

with coefficients in Qp. We extend the definition of vp on Qp by letting vp(z) = minQp,z(0)1/d

where minQp,z is the minimal polynomial of z over Qp and d is the degree of that polynomial.

Qp is not complete. We denote Cp the completion of Qp. It is a complete, algebraically closed

field.

1.2 p-adic continuous functions

In analysis, one often uses the concept of a ball centred at a of radius n. In Qp, a ball centred

at a of radius n is of the form a+ pnZp = {x ∈ Qp : |x− a|p ≤ p−n}. Interestingly, this set is

both open and closed at the same time. Let b ∈ a+pnZp where the nth digit of b is bn. Then,

b is included in the smaller ball a + bn + pn+1Zp and we have a + bn + pn+1Zp ⊂ a + pnZp.
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This shows that a+ pnZp is an open set. The complement of a+ pnZp is the union over all

a′ ∈ Qp such that a′ /∈ a + pnZp of the open sets a′ + pnZp. Thus, a + pnZp is also a closed

set. Those balls form a basis of open sets, meaning that every open subset of Qp is an union

of open subsets of this type.

The rest of this section and the next one are important results from [3].

Definition 1.2.1. Let C0(Zp,Qp) be the space of continuous functions on Zp with values in

Qp. The valuation of this space is vC0(f) = infx∈Zp(vp(f(x))).

C0 endowed with this valuation has the structure of a normed complete metric space. A

function f on Zp is continuous if f(x)− f(y) is divisible by a high power of p (f(x) and f(y)

are p-adically close), then x− y is also divisible by a high power of p.

For x ∈ Zp, we define the binomial function

(
x

n

)
=

1 if n = 0,

x(x−1)···(x−n+1)
n!

if n ≥ 1.

We now state a result due to Mahler that characterize continuous functions on Zp.

Theorem 1.2.1 (Mahler). f ∈ C0(Zp,Qp) if and only if

1. for all x ∈ Zp, f(x) =
∑∞

n=0 an(f)
(
x
n

)
,

2. limn→∞ vp(an(f)) =∞,

where an(f) are the Mahler coefficients given by an(f) =
∑n

i=0(−1)i
(
n
i

)
f(n− i).

Proof. The proof of the theorem can be found in [3] page 8.

Definition 1.2.2. For z ∈ Qp such that vp(z − 1) > 0 we define zx =
∑∞

n=0

(
x
n

)
(z − 1)n.

By Mahler’s theorem, zx ∈ C0(Zp,Qp) and by properties of binomial coefficients, zx+y =

zxzy.

Definition 1.2.3. Let X and Y be two metric spaces. A map f : X → Y is called locally

constant if every point x ∈ X is included in a ball U such that f(U) is a single element of

Y .

It is immediate that locally constant functions are continuous. We shall see that these

special type of functions play the same role as step functions in p-adic integration.
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Definition 1.2.4. For n ≥ 0, let the characteristic function of a+ pnZp be

χa+pnZp : Zp → {0, 1}

x 7→

0 if x /∈ a+ pnZp

1 if x ∈ a+ pnZp.

Proposition 1.2.1. Let f : Zp → Qp be a locally constant function. Then, f is a finite

Qp-linear combination of characteristic functions.

Proof. Let x ∈ Zp. Then, because f is locally constant, there exist a neighbourhood a+pnZp

of x such that for all y ∈ a + pnZp, f(y) = 1 · c = χa+pnZp(y) · c where c ∈ Qp. Now, let’s

consider the open covering {Vi} = ai + pniZp where, for all xi ∈ Zp, Vi is a neighbourhood

of xi where f is locally constant. Since Zp is compact, there is only a finite number of such

neighbourhood, let’s say {Vi}Nj=1. Hence, f(x) = c1χV1(x) + c2χV2(x) + · · ·+ cNχVN (x) with

c1, c2, . . . , cN ∈ Qp.

1.3 Locally analytic functions on Zp

Just like in the real case, the p-adic derivative is defined to be the limit of the quotient
f(x+h)−f(x)

h
as |h|p → 0. For x0 ∈ Cp and r ∈ R, we define

D(x0, r) = {x ∈ Cp : vp(x− x0) ≥ r}.

Definition 1.3.1. A function f : D(x0, r)→ Cp is analytic if it can be expressed as a Taylor

expansion at x0. In other words,

f(x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)n

for x ∈ D(x0, r).

We denote LA(Zp,Qp) the set of locally analytic functions on Zp.

Remark. Analytic functions are infinitely differentiable, and so, continuous. This implies

the inclusion LA ⊂ C0.

1.4 p-adic distributions and the Amice transform

Definition 1.4.1. A distribution µ on Zp with values in Qp is a continuous Qp-linear map

f 7→
∫
Zp
fµ from LA(Zp,Qp) to Qp. We denote the set of distributions from LA to Qp by

D(Zp,Qp).
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In other words, a distribution is an element of the dual space of LA(Zp,Qp).

Definition 1.4.2. Let QpJT K be the set of formal power series with coefficients in Qp.

Definition 1.4.3. The Amice transform of a distribution µ is the function:

Aµ(T ) =
∞∑
n=0

T n
∫
Zp

(
x

n

)
µ =

∫
Zp

(1 + T )xµ.

Since
(
x
n

)
is just a polynomial,

(
x
n

)
is clearly analytic and so

∫
Zp

(
x
n

)
µ is well defined.

The second equality comes from the fact that if vp(T ) > 0, then
∑∞

n=0 T
n
(
x
n

)
converges to

(1 + T )x. We can see that the Amice transform maps a distribution µ to an element of

QpJT K. The converse is also true for convergent power series on the unit disc.

Theorem 1.4.1. The map µ 7→ Aµ is an isomorphism of complete metric spaces from

D(Zp,Qp) to convergent series on the unit circle in QpJT K under the appropriate valuation

for each spaces.

We will give a sketch of the proof. Giving the complete proof would require definning

valuations on both spaces and showing that Aµ is continuous wich is a bit tedious. The

details can be found in [3]. However, we will show how one can go from D to QpJT K and

from QpJT K to D. Let µ ∈ D(Zp,Qp). Then, the associated power series is given by

F (T ) =
∑∞

n=0 bn(µ)T n where bn(µ) =
∫
Zp

(
x
n

)
µ. On the converse, let F (T ) =

∑∞
n=0 bnT

n

such that F (T ) converges on the unit circle. Then, for f ∈ LA we let µ : f 7→
∑∞

n=0 bnan(f).

It can be shown that
∑∞

n=0 bnan(f) is indeed convergent and that µ ∈ D.

Proposition 1.4.1. The space of locally constant function is dense in LA(Zp,Qp).

Proof. Let f ∈ LA(Zp,Qp) and write fn =
∑pn−1

j=0 f(j)χj+pnZp . It is clear that fn → f in C0

and particularly in LA.

Hence, for f ∈ LA(Zp,Qp),
∫
Zp
fµ is given by the following ”Riemann sums”

∫
Zp

fµ = lim
n→∞

pn−1∑
i=0

f(i)

∫
Zp

χi+pnZpµ.

From this result, it follows that a distribution µ is uniquely determined by its values at

characteristic functions.
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1.5 Cyclotomic polynomials and roots of unity

For this section, we use Z/n to denote the set of integers modulo n.

Most of this section except theorem 1.5.2 comes from [4].

Definition 1.5.1. An nth root of unity is a solution to the polynomial equation xn− 1 = 0.

We denote µn the set of nth roots of unity.

By the fundamental theorem of algebra, the cardinality of µn is exactly n in characteristic

0.

Proposition 1.5.1. The set µn together with usual multiplication forms an abelian group.

Proof. Let z1, z2 ∈ µn. (z1z2)n − 1 = zn1 z
n
2 − 1 = 0 implies that z1z2 ∈ µn and that (µn, ·)

is closed. 1 ∈ µn is the identity. If z is a root of unity with order k, then zn−k is the

multiplicative inverse of z.

Definition 1.5.2. For a positive integer n, if zn = 1 and zt 6= 1 for all positive integers

t < n, we say that z is a primitive nth root of unity.

Proposition 1.5.2. In addition, µn is also a cyclic group.

Proof. Let z be a primitive nth root of unity. This means that z as order n in the group µn.

Hence, 〈z〉 is a group of order n inside µn. Thus, 〈z〉 = µn and µn is cyclic.

Since µn is cyclic of order n, it is isomorphic to Z/n, the integers modulo n.

We now define polynomials whose roots are the primitive nth roots of unity.

Definition 1.5.3. For any positive integer n the nth cyclotomic polynomial, φn(x), is given

by

φn(x) = (x− ζ1)(x− ζ2) · · · (x− ζs),

where ζ1, ζ2, . . . , ζs are the primitive nth roots of unity.

Theorem 1.5.1. Let n be a positive integer, then

xn − 1 =
∏
d|n

φd(x).

Proof. This proof comes from [4][Theorem 3.9]. Suppose that ζ is a root of φd(x), where d|n.

It follows that ζ is a dth root of unity. Let q be the integer such that n = dq, then

ζn = (ζd)q = 1q = 1.
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It follows that ζ is a root of xn− 1. Now suppose that ζ is a root of xn− 1. It follows that ζ

is an nth root unity. Say that the order of ζ is d, and note that ζ will be a primitive dth root

of unity. Therefore, ζ is a root of φd(x). Since µd forms a subgroup of µn because d ≤ n, it

follows that d|n by Lagrange theorem. So ζ is a root of Φd(x) for some d that divides n. We

have shown that xn − 1 and
∏

d|n φd(x) share all their roots. Since
∏

d|n φd(x) is a product

of monic polynomials, it will also be monic. Hence, xn − 1 and
∏

d|n φd(x) are both monic,

which means that they must be equal.

Corollary 1.5.1. The pnth cyclotomic polynomial is given by φpn(x) = x(p−1)pn−1
+x(p−2)pn−1

+

· · ·+ xp
n−1

+ 1.

Proof. We use the previous theorem twice to get

xp
n − 1 =

∏
d|pn

φd(x)

= φpn(x)
∏
d|pn−1

φd(x)

= φpn(x)(xp
n−1 − 1).

Dividing both sides by (xp
n−1 − 1) gives φpn(x) = xp

n−1

xpn−1−1
= x(p−1)pn−1

+ x(p−2)pn−1
+ · · · +

xp
n−1

+ 1.

Remark. This also shows that the degree of φpn(x) is (p− 1)pn−1.

The next theorem will be of importance later on.

Theorem 1.5.2. Let us write Φn(x) for φpn(x) to abbreviate the notation. Let n ≥ 1, m ≥ 0

be integers and let λ+
n (m) =

∑n−1
l=0 p

2l+1bm/plc mod p2(l+1), then

n∏
j=1

Φ2j(x) =

pn−1∑
m=0

xλ
+
n (m)

with λ+
n (m) all distinct.

Proof. To appear in [5].

To give an idea, here is an example for the case p = 3 and n = 5.

2∏
j=1

Φ2j(x) =
32−1∑
m=0

x
∑1

l=0 32l+1bm/3lc mod 32(l+1)

=
32−1∑
m=0

x3bmc mod 32+33bm/3c mod 34

= 1 + x3 + x6 + x27 + x30 + x33 + x54 + x57 + x60
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Like mentioned above, the power of x are all integers whose expansion in base 3 contains

only odd power of 3.

Here is the analogous result for the product of odd prime power cyclotomic polynomials.

Again, we write Φn(x) for φpn(x).

Theorem 1.5.3. Let n be an integer greater than 0 and let λ−n (m) =
∑n−1

l=0 p
2lbm/plc

mod p2l+1, then
n∏
j=1

Φ2j−1(x) =

pn−1∑
m=0

xλ
−
n (m).

Proof. Similar to the case of even prime power cyclotomic polynomials.

1.6 The characteristic function as a sum of roots

Definition 1.6.1. Let ζ ∈ µpn be a pnth root of unity. We define the function ζx : Zp → Qp

given by x 7→ ζx. There are pn such function for a given n ≥ 1.

The function ζx is locally constant mod pn i.e. ζ(x+pn) = ζx as shown by the next

proposition.

Proposition 1.6.1. If x ∈ pnZp, then ζx = 1.

Proof. Suppose x ∈ pnZp. Then, x can be written as x = anp
n + an+1p

n+1 + · · · . Now,

ζx = ζanp
n+an+1pn+1+···

= (ζp
n

)an(ζp
n+1

)an+1 · · ·
= 1

because the multiplicative order of ζ is less or equal to pn.

Proposition 1.6.2. ζx : (Zp,+)→ (Qp
×
, ·) is a group homomorphism.

Proof. Let x, y ∈ Zp, we have ζ(x+y) = ζxζy.

Corollary 1.6.1. We have the injection ζx : Zp�pnZp
→ Qp

×
.

Proof. This follow from the fact that ker ζx = pnZp.

Lemma 1.6.1. Zp�pnZp
∼= Z�pnZ as additive groups.

Proof. A straightforward application of the first isomorphism theorem gives the result.

So we can see the function ζx as an injection from the integers modulo pn to the pnth

roots of unity. Surjectivity depends on whether or not ζ is a primitive pnth root.

11



Proposition 1.6.3. For n ≥ 1, the characteristic function of a+pnZp is given by the formula

χa+pnZp(x) =
1

pn

∑
ζ∈µpn

ζx−a.

Proof. If x ∈ pnZp, then
∑

z∈µpn ζ
x = pn. If x /∈ pnZp, then by choosing ζn a generator of

µpn , we have that ∑
ζ∈µpn

ζx = 1 + ζxn + (ζ2
n)x + · · ·+ (ζp

n−1
n )x

= 1 + ζxn + (ζxn)2 + · · ·+ (ζxn)p
n−1

=
1− (ζxn)p

n

1− ζxn
= 0

We can use the formula for geometric sums because ζn is primitive, thus ζxn 6= 1. Hence,∑
ζ∈µpn ζ

x−a will be equal to pn if x ∈ a+ pnZp and equal to 0 if not.

2 Pollack’s plus and minus logarithm log±p

In this section we will give the definition and some properties of the plus and minus logarithms

defined by Pollack in [6].

2.1 Definitions

Like in theorem 1.5.2, let Φn(T ) =
∑p−1

t=0 T
pn−1t be the pnth cyclotomic polynomial. We also

write ζn for a primitive pnth root of unity.

Definition 2.1.1. The p-adic logarithm is defined by the following formula

logp(1 + T ) =
∞∏
k=1

Φk(T )

p
.

It is also possible to define the p-adic logarithm in the more standard way logp(1 + T ) =∑∞
n=1

(−1)n+1xn

n
. Both are equivalent.

Definition 2.1.2. We say that γ is a topological generator of a group G if the closure of

〈γ〉 is dense in G.

Definition 2.1.3. For any integer j and γ a topological generator of 1 + pZp, we define

log+
p,j(T ) :=

1

p

∞∏
n=1

Φ2n(γ−j(1 + T ))

p
,

log−p,j(T ) :=
1

p

∞∏
n=1

Φ2n−1(γ−j(1 + T ))

p
.

12



Lemma 2.1.1. log+
p,j(T ) and log−p,j(T ) converge and define power series in QpJT K which are

convergent on the open unit disc.

Proof. We prove convergence for the first product, the proof for the second is similar. To

see that the product converges, it suffices to see that

Φ2n (γ−j(1 + T ))

p
→ 1 as n→∞.

Let fn(T ) = (1/p)Φ2n(γ−j(1 + T ))− 1. We must show that fn → 0 as n→∞. We have for

k < 2n,

fn(γj · ζk − 1) =
Φ2n(ζk)

p
− 1 =

1

p

(
p−1∑
t=0

ζp
n−1t
k

)
− 1 =

1

p
(p)− 1 = 0.

So if ωn,j = (γ−j(1 + T ))p
2n−1 − 1, then ωn,j|fn because ωn,j shares its roots with fn and

deg(ωn,j) = p2n−1 < (p− 1)p2n−1 = deg(fn). Because γ ∈ 1 + pZp, it follows that γ−j is also

in 1 + pZp, let’s say γ−j = 1 + p · a where a ∈ Zp. We can now apply the binomial theorem

to get

ωn,j(T ) =
(

(1 + p · a)p
2n−1
)(

(1 + T )p
2n−1
)
− 1

=

p2n−1∑
m=1

p2n−1∑
k=1

(
p2n−1

m

)(
p2n−1

k

)
(pa)mT k

and deduce that each term has a valuation of at least 2n. Hence, vp(ωn,j)→∞ when n→∞.

This imply that ωn,j → 0 and our original product converges.

Corollary 2.1.1. The power series

log+
p (T ) :=

k−2∏
j=0

log+
p,j(T ),

log−p (T ) :=
k−2∏
j=0

log−p,j(T ),

in QpJT K are convergent on the open unit disc.

Proof. This follows from lemma 2.1.1.

Those functions were given that name because we have the relation

log+
p (T ) log−p (T ) =

k−2∏
j=0

logp(γ
−j(1 + T ))

p2(γ−j(1 + T )− 1)
.

13



2.2 Interpolation formulae

To simplify, we will work in the case k = 2. We have log+
p (T ) = 1

p

∏∞
n=1

Φ2n(1+T )
p

and

log−p (T ) = 1
p

∏∞
n=1

Φ2n−1(1+T )
p

. Pollack found the following interpolation property of log±p :

Lemma 2.2.1. In the case where k = 2, log±p take special values at ζn− 1. These values are

log+
p (ζn − 1) =

0 2|n,

p−(n+1)/2
∏(n−1)/2

j=1 Φ2j(ζn) 2 - n,

log−p (ζn − 1) =

p−n/2−1
∏n/2

j=1 Φ2j−1(ζn) 2|n,

0 2 - n.

Proof. For m > n,

Φm(ζn) = 1 + (ζn)p
m−1

+ · · ·+ (ζn)p
m−1(p−1) = p.

Hence the terms in the tail-end of the product describing log±p are all 1, and the beginning

of the product is what appears in the above formula.

Remark. If we have a primitive pkth roots of unity where k < n, then

p−(k+1)/2

(k−1)/2∏
j=1

Φ2j(ζk) = p−(n+1)/2

(n−1)/2∏
j=1

Φ2j(ζk).

This is because, as stated above, every term with index greater than (k − 1)/2 is p and

does not change the product as it gets cancelled by the added factor of p−(n+1)/2. A similar

argument also works for the formula interpolating log−p .

3 log±p and the Amice transform

Proofs of this section won’t be given as they will appear in a article to be published [5].

3.1 Main result

We have just seen that log±p are power series on the open unit disc, though defined as prod-

ucts, and we have also seen that for each power series in QpJT K, there is an associated

distribution in D(Zp,Qp). Here, we will give explicit formulae for the distributions associ-

ated to log+
p and log−p .
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Definition 3.1.1. For a distribution µ ∈ D(Zp,Qp), we let µ(a + pnZp) =
∫
a+pnZp

µ =∫
Zp
χa+pnZp(x)µ(x).

We now recall the definition of the Amice transform.

Definition 3.1.2. The Amice transform of a distribution µ is defined to be

Aµ(T ) =

∫
Zp

(1 + T )xµ(x).

Definition 3.1.3. Let µ+ be the distribution associated to log+
p and µ− be the distribution

associated to log−p .

Lemma 3.1.1. For ζ ∈ µpn , log±p can be expressed in terms of an integral∫
Zp

ζxµ±(x) = log±p (ζ − 1).

Proof. First remark that because µ+ is the distribution associated to log+
p , we have that

Aµ+(T ) = log+
p (T ). Furthermore, Aµ+(ζ − 1) =

∫
Zp
ζxµ+(x).

We can now give fairly explicit formulae describing the values that µ± takes on charac-

teristic functions. For µ+, the case where n is odd is natural, while the case n even requires

some adjustment. The same goes for µ− where the role of n is inversed. In order to better

understand where the results come from, the reader may find it useful to first assume that

n is odd when looking at results about log+
p . In doing so, floor functions can be ignored.

Proposition 3.1.1. The distribution µ+ is given by

∫
a+pnZp

µ+(x) =
1

pb(3n+2)/2c

∑
ζ∈µpn

ζ−a
bn/2c∏
j=1

Φ2j(ζ)

and the distribution µ− is given by

∫
a+pnZp

µ−(x) =
1

pb(3n+1)/2c+1

∑
ζ∈µpn

ζ−a
b(n+1)/2c∏

j=1

Φ2j−1(ζ).

The product on the right hand side is still a bit complex so we would want to find a more

simple expression for
∏

Φ2j(x) and
∏

Φ2j−1(x) in the form
∑
anx

n. We use theorem 1.5.2

to do so. Because we have floor functions in our summation bounds, the λ are given by

λ+
bn/2c(m) =

∑b(n−2)/2c
l=0 p2l+1bm/plc mod p2(l+1) and λ−b(n+1)/2c(m) =

∑b(n−1)/2c
l=0 p2lbm/plc

mod p2l+1.
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Corollary 3.1.1.∫
a+pnZp

µ+ =
1

pb(3n+2)/2c

pbn/2c−1∑
m=0

∑
ζ∈µpn

ζλ
+
bn/2c(m)−a,

∫
a+pnZp

µ− =
1

pb(3n+1)/2c+1

pb(n+1)/2c−1∑
m=0

∑
ζ∈µpn

ζλ
−
b(n+1)/2c(m)−a.

We now define two subsets of Zp that will allow us to express µ± in terms of those sets.

Let

S+
n := {a ∈ Zp : even powers of p vanish in the expansion of a modulo pn};
S−n := {a ∈ Zp : odd powers of p vanish in the expansion of a modulo pn}.

Theorem 3.1.2. The values of µ± are given by∫
a+pnZp

µ+ =

p−b(n+2)/2c if a ∈ S+
n ,

0 otherwise,∫
a+pnZp

µ− =

p−b(n+3)/2c if a ∈ S−n ,

0 otherwise.

3.2 Generalization for two-variable logarithms

In this section, we apply our result on one-variable logarithms to two-variable logarithms

such as those defined by Loeffler in [7].

Definition 3.2.1. For ∗, ◦ ∈ {+,−}, we define four new two-variable logarithms by using

log+
p and log−p :

log∗,◦p (T1, T2) = log∗p(T1) · log◦p(T2).

Definition 3.2.2. We define a = (a, b) and n = (n,m). We write a+pnZp for (a+pnZp, b+

pmZp) in Z2
p. Let χa+pnZp be the characteristic function of (a+ pnZp, b+ pmZp) on Z2

p.

χa+pnZp : Z2
p → {0, 1}

(x, y) 7→

1 if x ∈ a+ pnZp and y ∈ b+ pmZp,

0 otherwise.

Proposition 3.2.1. For n,m ≥ 1, the characteristic function χ is given by

χa+pnZp(x, y) =
1

pn+m

∑
ζ∈µpn

ζx−a

 ∑
ζ∈µpm

ζy−b

 .
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Proof. The RHS will be nonzero only if both x ∈ a+pnZp and y ∈ b+pmZp. In this case, by

the same argument as in 1 dimension, the product of the two sums will be equal to pn+m.

Definition 3.2.3. For µ ∈ D(Z2
p,Qp), we define the two-dimensional Amice transform by

the formula

Aµ(T1, T2) =

∫
Z2
p

(1 + T1)x(1 + T2)yµ(x, y).

Remark. As shown by Kim in [8], not all distribution on Z2
p can be expressed as power series.

The following condition must holds : For any F (T1, T2) =
∑

i,j≥0 bi,jT
i
1T

j
2 , |bi,j|p ≤ O( 1

|ar+s
p |p

)

for i < pr and j < ps. Since µ∗,◦, ∗, ◦ ∈ {+,−}, is in D(1/2,1/2)(Z2
p,Qp), the condition is

satisfied. Kim’s construction also shows that µ is completely determined by its values on

characteristic functions.

Just like in the one-dimensional case, the two-dimensional Amice transform gives a cor-

respondence between convergent power series in QpJT1, T2K and distributions in D(Z2
p,Qp)

as long as the condition stated by Kim holds.

Corollary 3.2.1. It is immediate from the definition that log∗,◦p (ζn−1, ζm−1) =
∫
Z2
p
ζxnζ

y
mµ∗,◦(x, y).

Theorem 3.2.1. The problem of finding values of µ∗,◦(x, y) can be reduced to the one-

dimensional case: ∫
a+pnZp
b+pmZp

µ∗,◦(x, y) =

∫
a+pnZp

µ∗(x)

∫
b+pmZp

µ◦(y).

Using results already proven for the one-dimensional case, we deduce the next corollary.

Corollary 3.2.2. The values of µ∗,◦ are given by

∫
a+pnZp
b+pmZp

µ+,+(x, y) =

p−b(n+2)/2c−b(m+2)/2c if a ∈ S+
n and b ∈ S+

m,

0 otherwise,∫
a+pnZp
b+pmZp

µ+,−(x, y) =

p−b(n+2)/2c−b(m+3)/2c if a ∈ S+
n and b ∈ S−m,

0 otherwise,∫
a+pnZp
b+pmZp

µ−,+(x, y) =

p−b(n+3)/2c−b(m+2)/2c if a ∈ S−n and b ∈ S+
m,

0 otherwise,∫
a+pnZp
b+pmZp

µ−,−(x, y) =

pb(n+3)/2c−b(m+3)/2c if a ∈ S−n and b ∈ S−m,

0 otherwise.

Proof. This follows directly from theorem 3.1.2.
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